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ABSTRACT: We have performed hi-fidelity dissipative
particle dynamics (DPD) simulations of shear flow of
polymeric melts in a broad range of system sizes and two
entanglement densities to determine the critical conditions for
occurrence of both transient and steady shear banding. Here,
we report, for the first time, simulation results that clearly
demonstrate the consecutive steps leading to shear banding,
that is, the stress overshoot drives locally inhomogeneous
chain deformation and thus spatially inhomogeneous chain
disentanglement; in turn, the localized jump in the
entanglement density along the velocity gradient direction
results in a considerable jump in normal stress and viscosity, which ultimately leads to shear banding. Overall, our observations
are consistent with prior experimental studies, and an explanation for the stability of steady and transient shear banded flows is
postulated based on the well-known interfacial stability mechanism of stratified polymeric fluids.

The basic foundation for modeling of entangled polymer
melts has been the “Tube Theory” developed by Doi and

Edwards1 three decades ago and extensively refined since to
improve its predictions of experimental measurements, that is,
contour-length fluctuation and convective constraint release
(CCR) were incorporated into the original “tube theory”; see
refs 2 and 3, for a recent exposition of the current state of
reptation theory. Despite tube theory’s notable success, several
key concepts including the tube field, precise definition of an
entanglement and its contribution to stress remain open
questions. To this end, video microscopy has been successfully
employed to study the behavior and relaxation mechanism of
individual chains in entangled polymeric fluids.4,5 However, the
experimental difficulties associated with tracking a sufficiently
large number of single molecules in highly entangled polymeric
liquids makes atomistic and mesoscopic simulations6−9 an
indispensable tool for answering the aforementioned open
questions.
The original Doi−Edwards constitutive equation1 predicts a

stress maximum at the shear rate in the vicinity of the inverse of
the reptation time, τd

−1. Hence, it is prone to shear banding, that
is, the fluid, instead of flowing with a uniform velocity in a
unidirectional shear flow, separates into distinct fast and slow
flowing regimes. Incorporation of CCR broadens the relaxation
spectrum, thereby reducing the possibility of shear banding.
However, ample experimental observations via particle tracking
velocimetry, most notably from Wang’s group,10−12 have
documented the existence of steady and transient shear
banding in unidirectional shear flow of entangled polymeric
fluids (1 to 2 × 106 g/mol polybutadiene solutions).

Continuum level linear stability analyses with the most
advanced tube-based models, such as the Rolie−Poly model,13

have also demonstrated the existence of transient shear banding
for both monotonic and nonmonotonic shear stress−shear rate
flow curves.14−16 However, the linear stability predictions are
not conclusive since they are very sensitive to the assumed rate
of CCR. Thus, even the most advanced reptation based
constitutive equations require additional molecular level
information before conclusively addressing flow instability
and shear banding in this class of flows. To this end,
development of atomistic or coarse-grained simulation
techniques could play a central role in determination of the
critical condition for onset of shear banding as well as its
mechanism. In fact, a recent study has demonstrated the utility
of Non-Equilibrium Molecular Dynamics (NEMD) simulations
in predicting shear banding in planar Couette flow of entangled
polymeric melts, modeled as bead−spring chains.17 Both
transient and steady shear banding for nonmonotonic shear
stress−shear rate flow curve were observed in a start-up flow of
polymeric fluids with equilibrium entanglement density of 10.
Although to date the existence of shear banding in entangled

polymeric melts has been documented in one molecular
simulation and in many experiments, the molecular mechanism
for this intriguing phenomenon is not known. In fact, today the
origin of shear banding is one of the most highly debated topics
in the rheology community. To this end, we have performed hi-
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fidelity coarse-grained dissipative particle dynamics (DPD)
simulations in a broad range of system sizes (various box sizes)
and two entanglement densities to determine the critical
conditions for occurrence of both transient and steady shear
banding. Overall, our aim is to pave the way for a mechanistic
understanding of shear banding in entangled polymeric fluids
via detailed analysis of flow-microstructure coupling. In this
communication we report, for the first time, simulation results
that describe the progression to macroscopic shear banding in
well entangled polymer melts. Specifically, during stress
relaxation in a typical start-up setting, spatially inhomogeneous
chain disentanglement in the velocity gradient direction acts as
an intermediate step between a stress overshoot and the
development of a banded velocity profile.
Motivated by a well-established prior study,18 we have

developed and benchmarked a highly efficient massively parallel
DPD code for entangled polymeric liquids. In these
simulations, the topological constraints created by surrounding
chains are satisfied by choosing an appropriate conservative
force amplitude complemented by a reasonable description of
bond stretching (for more information, see ref 18). Mass m,
length rc, and energy kBT are the base units; thus, the DPD time
scale is given by τ = (mrc

2/kBT)
1/2. The DPD formulation19,20

consists of pairwise conservative (FC), dissipative (FD), and
random (FR) forces applied between all the beads within a
certain cut-off distance rc. These forces are given by

= − ⃗ ≤

>

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟F a

r

r
e r r

r r

1 ,

0,

ij ij
ij

ij ij

ij

C

c
c

c

γω σζ ω= − ⃗ · ⃗ ⃗ = ⃗F r v e e F r e( )( ) , ( )ij ij ij ij ij ij ij ij ij
D D R R

where

⃗ = ⃗ − ⃗ | ⃗ | = ⃗ = ⃗ ⃗ = ⃗ − ⃗r r r r r e r r V V V, , / ,ij i j ij ij ij ij ij ij i j

aij is the maximum repulsion between particles i and j. The
weighting functions, ωD and ωR, as well as γ and σ, are related
through the fluctuation−dissipation theorem. ζij is a randomly
fluctuating variable with Gaussian statistics. The beads are
connected using harmonic springs,18 and a small bending
potential21 is effective between three consecutive beads.
We chose the following: a = 200, k (spring constant) = 400,

kb (bending stiffness) = 2.0, req = 0.95, γ = 4.5, ρ = 1.0, and δt =
0.012 in the DPD units. The correct scaling of radius of
gyration and longest relaxation time with molecular weight
confirms accurate inclusion of excluded volume and hydro-
dynamic correlations in the simulations, thus, proves the fidelity
of our DPD model. The aforementioned DPD simulator, in
conjunction with Lees-Edwards boundary condition,22 has been
used to study shear banding in the planar Couette flow of
entangled polymeric systems of N = 200 (⟨Z⟩ = 13
entanglements per chain at equilibrium) and N = 250 (⟨Z⟩ =
17 entanglements per chain at equilibrium) with 1250 and 705
chains, respectively, in a canonical (NVT) ensemble. The
number of entanglements in the aforementioned systems is
close to the lower range of experimental entanglement densities
where shear banding has been observed. The equations of
motion were integrated by the velocity-Verlet algorithm. The
results reported are from a simulation box with an aspect ratio
of 2.5:1:1 with a larger dimension in the flow direction, x.
Normal dimensions to the flow direction are at least twice the

average equilibrium chain end-to-end distance. To achieve
steady state velocities, shear and first normal stresses,
simulations up to 6× the longest relaxation time of the system
have been performed. Considering the large size of the
simulation box, accurate temporal ensemble averages were
obtained over 0.1 τd. The accuracy of the results was further
verified by performing simulations with different initial
conditions and box sizes. The reported results are free of any
artifacts associated with the box size. Please refer to the SI for a
complete discussion of the influence of box size on the
observed shear banded structures. Moreover, our simple shear
simulation results are fully consistent with NEMD computa-
tions of Nafar et al.23 It should also be noted that the
entanglement densities reported herein were determined by
using the Z1 code developed by Kröger et al.24,25

The steady shear stress as a function of shear rate for chains
with 200 and 250 beads is depicted in Figure 1. In this figure

the shear rate is nondimensionalized by the equilibrium longest
relaxation time of each system, that is, τd0 (Wi = γτ̇d0) and shear
stress value is reported in DPD unit. In what follows, the
longest relaxation time of the system or the disengagement
time under flow at a given shear rate is labeled as τd. In general,
the disengagement time is calculated by fitting the autocorre-
lation function of unit end-to-end vector with an exponential
function.
We have observed steady shear banding in the most

entangled system, N = 250 at Wi = 30 and 40, that is, shear
rate regime of, τd

−1 < γ ̇ < τR
−1. Henceforth, the flow dynamics in

the most entangled system has been scrutinized via detailed
examination of the temporal evolution of velocity profile and
shear stress. As depicted in the inset of Figure 2a, a linear
velocity profile is observed at the stress overshoot (t = 0.2τd),
however, and at t = 0.4τd, localized perturbations in the velocity
profile are observed. These perturbations grow and lead to the
incipient stratified flow/shear banded structures at t = 0.6τd. In
turn, the slow (low shear rate) and fast (high shear rate) bands
continue to develop (2τd < t < 6τd); specifically, the thickness
of the slow band gradually increases until it occupies nearly half
of the box. At this point, the steady shear banded structure is
realized.
As the existence of steady shear banding has been clearly

demonstrated for the most entangled system studied, our
primary goal hereafter is to gain insight into the molecular
mechanism of shear banding. To this end, first topological
measures of the entanglement network as a function of flow
strength have been investigated. In general, the probability
distribution function of the entanglement density P(Z), follows
a Poisson distribution at equilibrium6 as well as under flow

Figure 1. Steady shear stress as a function of Weissenburg number.
Rouse time, τR is estimated via (τd/τR) = 3Z.
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conditions, as shown by ref 6. A detailed examination of the
number of entanglements, and the entanglement distribution
reveals significantly different results in the regions that are
eventually occupied by the slow and fast bands at steady state.
Specifically, after the stress overshoot (t > 0.2τd), but long
before the incipient stratified flow/shear banded structure is
observed (t < 0.6τd), the entanglement distribution function as
well as the average entanglement density (⟨Z⟩) become
different in the aforementioned regions. This topological
feature continues as long as shear banding exists (see Figure
3). This finding underscores the fact that inhomogeneous flow-
induced disentanglement in the velocity gradient direction
occurs (see Figure 4) before the shear banded structure is
observed. Specifically, the less entangled chains populate the
faster velocity band, and the more entangled chains are within
the slower band.
We hypothesize that the origin of inhomogeneous chain

disentanglement in the velocity gradient direction is a
consequence of stress overshoot and subsequent stress
relaxation caused by rapid and continuous changes in molecular
configuration including chains orientation and stretch. During
stress relaxation, chain orientation is not a dominant relaxation
mechanism; hence, spatially inhomogeneous deformation of the
chains occurs between t ≥ 0.2τd and t ≤ 0.4τd after the stress
maximum (see Figure 5a,b), leading to distinct chain topologies
and commensurate inhomogeneous chain entanglement
densities. This hypothesis is consistent with the free energy
calculation of Marrucci and Grizzuti26 for the Doi−Edwards
model. Specifically, they have shown that for shear strain γ > 2
curvature of the free energy is negative. This condition in turn
leads to “inhomogeneous deformation” unless relaxation
mechanisms, including orientation, occur to such an extent as

to significantly reduce the free energy. However, the latter can
only occur at very large values of shear rates. Our simulations
are also in agreement with the aforementioned postulate that is
in the presence of considerable stress overshoot (as evidenced
in Figure 2 for Wi ≥ 30) inhomogeneous chain disentangle-
ment in the velocity gradient direction is created; moreover, for
very large shear rates, that is, Wi ≥ 200, chain orientation and
the associated relaxation mechanism occur so rapidly that the
formation of inhomogeneous chain entanglement densities is
essentially prevented (see Figures S2 and S3 in the SI).
It is a well-known fact in theories of flowing polymeric melts

that entanglement density determines the elastic and viscous
behavior of the fluid. To this end, the observed localized jump
in entanglement density results in a pronounced jump in the
first normal stress N1 and localized differences in viscosity
along the velocity gradient direction. A prototypical temporal
evolution of first normal stress in the aforementioned region
and its difference between the less elastic (slow band) and more
elastic (fast band) bands for a steady shear banded flow is
shown in Figure 6. In general, due to the increased alignment of
the chains in the flow direction during start-up, first normal

Figure 2. (a, b) Temporal evolution of shear stresses and velocity
profiles: (a) steady shear banding; (b) transient shear banding.
Velocity profiles are shown in the inset with their time labels. The
time, t, the horizontal axis in the figure subsets (a) and (b) is scaled
with the disengagement time at the applied shear rate. The minor ticks
in the figure represent 0.2τd.

Figure 3. (a−d) Entanglement probability distribution function at
different times for Wi = 30. The red and dashed blue lines,
respectively, show the regions of the flow that are eventually occupied
by the slow and fast bands after 0.6τd; ΔZ = ⟨Z⟩slow band − ⟨Z⟩fast
band.

Figure 4. Spatial probability distribution function of two specific
entanglement points, 13 and 15, along the velocity gradient direction
Y, during transient time (time average between 0.3 and 0.6τd). The
vertical dashed lines show the interface between the slow and fast
bands. Note this spatial pdf belongs to the steady shear banding case,
N = 250 and Wi = 30.
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stress rises in both regions. Moreover, based on a polymer
chain configurational analysis, the chains with less entangle-
ment are more aligned in the flow direction as compared to
more entangled chains. Hence, the jump across the interface,
that is, ΔN1, and the associated viscosity difference grows as a
function of time until it reaches its steady value. Specifically,
after the stress overshoot, at t = 0.4τd, the localized jump in the
entanglement density gives rise to a significant ΔN1, that is,

13% of the average first normal stress and commensurate
perturbations in the velocity profile in Figure 2a. The
aforementioned localized nonuniform viscosity and elasticity
difference give rise to a stratified shear flow. We hypothesize
that if this stratified flow is stable to the interfacial disturbances,
it evolves over time until a steady shear banded profile is
realized. This sequence of events is clearly depicted in the insets
of Figure 2a starting at t = 0.6τd and culminating at t = 5τd. On
the other hand, if the stratified flow is unstable to interfacial
disturbances, interfacial perturbations develop and grow in
time, leading to interfacial mixing and destruction of a highly
localized jump in entanglement density in the velocity gradient
direction. Hence, the stratified flow will return back to a
uniform shear flow, as depicted in the insets of Figure 2b.
The rational suggested above clearly assumes that hydro-

dynamic modes are supported in the simulation box. However,
it should be noted that this is only a postulate and detailed
examinations are required based on extensive continuum level
analyses which is beyond the scope of this paper. Henceforth,
the interfacial stability of the sequence of stratified flows leading
either to a steady banded structure or homogeneous shear flow
will be scrutinized. In the limit of vanishing Reynolds number
(Re) and negligible interfacial tension, the parameter space that
determines the interfacial stability of stratified flows consists of
viscosity, elasticity and depth ratio. Specifically, in this class of
flows two general roles exists:27−30 (1) when the less viscous
fluid is thin compared to the more viscous fluid, the interface is
stable, the so-called “thin layer effect”,27 and (2) when the more
elastic layer is the majority component, elasticity stratification is
stabilizing.28 As shown in the inset of Figure 2a, where a steady
shear banded structure is observed, the slow band is the more
viscous and less elastic layer and occupies less than half of the
box volume in the incipient stratified flow. Hence, one has to
determine the relative importance of viscosity and elasticity
stratification on the overall stability of the interface.
Fortunately, Su and Khomami29 have already performed a
comprehensive study of the interfacial instability of stratified
polymeric flows. Specifically, they have demonstrated that for
depth ratios (ε = dmore viscous/dless viscous) larger than 0.5 and
elasticity ratios (EL = N1more elastic/N1less elastic) of order one, the
viscosity ratio (R = ηmore viscous/ηless viscous) should be larger than
∼6 for the interface to be stable (for more information, please
check Figure 2b in ref 30). Using the analogy explained in the
steady shear banding case, our incipient stratified flow and its
subsequent evolution to the final steady shear banded flow is
stable since 1.17 < EL < 1.3, 0.8 < ε < 1, and 9.5 < R < 13, that
is, under these conditions interfacial modes are suppressed in
the incipient banded structure and its subsequent flow
configurations. Hence, the observation of a steady shear
banding evolution is fully consistent with the interfacial stability
analysis of stratified viscoelastic polymeric flows.
Transient shear banding has also been observed in both

systems (N = 200 and 250) considered, but only at shear rates
larger than the inverse of rouse time of each system (see Figure
2b for a representative case). Although the progression to
banding, namely, observation of inhomogeneous entanglement
density in the velocity gradient direction, jump in the first
normal stress and the commensurate viscosity difference is
identical to the case where steady shear banding has been
observed, the incipient stratified flow is short-lived and it
returns to a homogeneous shear flow at ∼4τd. This short
lifetime of the banded structures is due to the fact that the
stratified flow is interfacially unstable. Specifically, the incipient

Figure 5. (a) Average chain extension in the flow direction scaled by L
along the velocity gradient direction, L is the magnitude of chain end-
to-end distance projection in the x direction at equilibrium. (b) Mean
chain angle calculated with respect to the flow direction along the
velocity gradient direction normalized by the θ0, θ0 is the average chain
angle with respect to the x direction at equilibrium. Y is scaled by the
box size, H.

Figure 6. Temporal evolution of first normal stress of steady shear
banded structures. The difference of N1 between the two bands
(ΔN1) is shown in the inset. During stress relaxation when chain
disentanglement occurs (t ≤ 1τd), ΔN1 reaches its utmost value, 23%
of the average N1 of the system, and then decreases to 14% of the
average N1 at the steady state. The time, t, the horizontal axis, is scaled
with the disengagement time at the applied shear rate.
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stratified flow and all observed short-lived banded structures are
unstable to interfacial modes as 1.05 < EL < 1.08, 4 < R < 5,
and 0.53 < ε < 0.66; hence, interfacial disturbances amplify and
lead to interfacial mixing that, in turn, reduces the jump in N1
and difference in viscosity until the first normal stress and
viscosity difference vanishes and flow returns to its homoge-
neous linear state (for more details on transient shear banding,
please refer to the Supporting Information). Overall, our
observation of transient shear banding is not only consistent
with earlier experimental findings, but also clearly depicts that
transient shear banding can occur for both monotonic and
nonmonotonic flow curves in the region where shear stress is
an increasing function of shear rate.
In conclusion, we have found the progression to shear

banding in highly entangled polymeric fluids based on the one
to one correspondence between flow-induced microstructural
evolution and fluid rheological properties. Specifically, in the
regime near or after the stress over shoot inhomogeneous flow-
induced entanglement densities in the velocity gradient
direction is observed giving rise to a discernible localized
jump in the first normal stress and a commensurate difference
in viscosity which leads to formation of a stratified shear flow.
In other words, the transition from a homogeneous flow to
macroscopic banding evolves through the spatially inhomoge-
neous entanglement density as it enhances the viscoelastic
stratification of the flow in the well entangled polymeric melts.
Moreover, the stability of steady and transient shear banded
structures has been rationalized based on the interfacial stability
of the stratified flow. Overall, this study has paved the way for
mechanistic understanding of occurrence of shear-banded
structures in entangled polymeric fluids.
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